3.3.9 \(\int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx\) [209]

Optimal. Leaf size=239 \[ \frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}} \]

[Out]

(4+4*I)*a^(5/2)*arctanh((1+I)*a^(1/2)*tan(d*x+c)^(1/2)/(a+I*a*tan(d*x+c))^(1/2))/d-1576/315*a^2*(a+I*a*tan(d*x
+c))^(1/2)/d/tan(d*x+c)^(1/2)-2/9*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(9/2)-38/63*I*a^2*(a+I*a*tan(d*x+c
))^(1/2)/d/tan(d*x+c)^(7/2)+92/105*a^2*(a+I*a*tan(d*x+c))^(1/2)/d/tan(d*x+c)^(5/2)+472/315*I*a^2*(a+I*a*tan(d*
x+c))^(1/2)/d/tan(d*x+c)^(3/2)

________________________________________________________________________________________

Rubi [A]
time = 0.47, antiderivative size = 239, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 28, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.179, Rules used = {3634, 3679, 12, 3625, 211} \begin {gather*} \frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(11/2),x]

[Out]

((4 + 4*I)*a^(5/2)*ArcTanh[((1 + I)*Sqrt[a]*Sqrt[Tan[c + d*x]])/Sqrt[a + I*a*Tan[c + d*x]]])/d - (2*a^2*Sqrt[a
 + I*a*Tan[c + d*x]])/(9*d*Tan[c + d*x]^(9/2)) - (((38*I)/63)*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(d*Tan[c + d*x]^
(7/2)) + (92*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(105*d*Tan[c + d*x]^(5/2)) + (((472*I)/315)*a^2*Sqrt[a + I*a*Tan[
c + d*x]])/(d*Tan[c + d*x]^(3/2)) - (1576*a^2*Sqrt[a + I*a*Tan[c + d*x]])/(315*d*Sqrt[Tan[c + d*x]])

Rule 12

Int[(a_)*(u_), x_Symbol] :> Dist[a, Int[u, x], x] /; FreeQ[a, x] &&  !MatchQ[u, (b_)*(v_) /; FreeQ[b, x]]

Rule 211

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/Rt[a/b, 2]], x] /; FreeQ[{a, b}, x]
&& PosQ[a/b]

Rule 3625

Int[Sqrt[(a_) + (b_.)*tan[(e_.) + (f_.)*(x_)]]/Sqrt[(c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)]], x_Symbol] :> Dist[
-2*a*(b/f), Subst[Int[1/(a*c - b*d - 2*a^2*x^2), x], x, Sqrt[c + d*Tan[e + f*x]]/Sqrt[a + b*Tan[e + f*x]]], x]
 /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0]

Rule 3634

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim
p[(-a^2)*(b*c - a*d)*(a + b*Tan[e + f*x])^(m - 2)*((c + d*Tan[e + f*x])^(n + 1)/(d*f*(b*c + a*d)*(n + 1))), x]
 + Dist[a/(d*(b*c + a*d)*(n + 1)), Int[(a + b*Tan[e + f*x])^(m - 2)*(c + d*Tan[e + f*x])^(n + 1)*Simp[b*(b*c*(
m - 2) - a*d*(m - 2*n - 4)) + (a*b*c*(m - 2) + b^2*d*(n + 1) - a^2*d*(m + n - 1))*Tan[e + f*x], x], x], x] /;
FreeQ[{a, b, c, d, e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && NeQ[c^2 + d^2, 0] && GtQ[m, 1] && Lt
Q[n, -1] && (IntegerQ[m] || IntegersQ[2*m, 2*n])

Rule 3679

Int[((a_) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*tan[(e_.) + (f_.)*(x_)])*((c_.) + (d_.)*tan[(e_
.) + (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(A*d - B*c)*(a + b*Tan[e + f*x])^m*((c + d*Tan[e + f*x])^(n + 1)/(f*
(n + 1)*(c^2 + d^2))), x] - Dist[1/(a*(n + 1)*(c^2 + d^2)), Int[(a + b*Tan[e + f*x])^m*(c + d*Tan[e + f*x])^(n
 + 1)*Simp[A*(b*d*m - a*c*(n + 1)) - B*(b*c*m + a*d*(n + 1)) - a*(B*c - A*d)*(m + n + 1)*Tan[e + f*x], x], x],
 x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 + b^2, 0] && LtQ[n, -1]

Rubi steps

\begin {align*} \int \frac {(a+i a \tan (c+d x))^{5/2}}{\tan ^{\frac {11}{2}}(c+d x)} \, dx &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {2}{9} \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {19 i a^2}{2}+\frac {17}{2} a^2 \tan (c+d x)\right )}{\tan ^{\frac {9}{2}}(c+d x)} \, dx\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}-\frac {4 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {69 a^3}{2}+\frac {57}{2} i a^3 \tan (c+d x)\right )}{\tan ^{\frac {7}{2}}(c+d x)} \, dx}{63 a}\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}-\frac {8 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (\frac {177 i a^4}{2}-69 a^4 \tan (c+d x)\right )}{\tan ^{\frac {5}{2}}(c+d x)} \, dx}{315 a^2}\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {16 \int \frac {\sqrt {a+i a \tan (c+d x)} \left (-\frac {591 a^5}{4}-\frac {177}{2} i a^5 \tan (c+d x)\right )}{\tan ^{\frac {3}{2}}(c+d x)} \, dx}{945 a^3}\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}}-\frac {32 \int -\frac {945 i a^6 \sqrt {a+i a \tan (c+d x)}}{8 \sqrt {\tan (c+d x)}} \, dx}{945 a^4}\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}}+\left (4 i a^2\right ) \int \frac {\sqrt {a+i a \tan (c+d x)}}{\sqrt {\tan (c+d x)}} \, dx\\ &=-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}}+\frac {\left (8 a^4\right ) \text {Subst}\left (\int \frac {1}{-i a-2 a^2 x^2} \, dx,x,\frac {\sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}\\ &=\frac {(4+4 i) a^{5/2} \tanh ^{-1}\left (\frac {(1+i) \sqrt {a} \sqrt {\tan (c+d x)}}{\sqrt {a+i a \tan (c+d x)}}\right )}{d}-\frac {2 a^2 \sqrt {a+i a \tan (c+d x)}}{9 d \tan ^{\frac {9}{2}}(c+d x)}-\frac {38 i a^2 \sqrt {a+i a \tan (c+d x)}}{63 d \tan ^{\frac {7}{2}}(c+d x)}+\frac {92 a^2 \sqrt {a+i a \tan (c+d x)}}{105 d \tan ^{\frac {5}{2}}(c+d x)}+\frac {472 i a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \tan ^{\frac {3}{2}}(c+d x)}-\frac {1576 a^2 \sqrt {a+i a \tan (c+d x)}}{315 d \sqrt {\tan (c+d x)}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]
time = 4.99, size = 207, normalized size = 0.87 \begin {gather*} \frac {a^2 \left (\frac {10080 e^{-i (c+d x)} \sqrt {-1+e^{2 i (c+d x)}} \tanh ^{-1}\left (\frac {e^{i (c+d x)}}{\sqrt {-1+e^{2 i (c+d x)}}}\right )}{\sqrt {-\frac {i \left (-1+e^{2 i (c+d x)}\right )}{1+e^{2 i (c+d x)}}}}-\csc ^5(c+d x) (1650 \cos (c+d x)-2051 \cos (3 (c+d x))+961 \cos (5 (c+d x))-282 i \sin (c+d x)+49 i \sin (3 (c+d x))+331 i \sin (5 (c+d x))) \sqrt {\tan (c+d x)}\right ) \sqrt {a+i a \tan (c+d x)}}{2520 d} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a + I*a*Tan[c + d*x])^(5/2)/Tan[c + d*x]^(11/2),x]

[Out]

(a^2*((10080*Sqrt[-1 + E^((2*I)*(c + d*x))]*ArcTanh[E^(I*(c + d*x))/Sqrt[-1 + E^((2*I)*(c + d*x))]])/(E^(I*(c
+ d*x))*Sqrt[((-I)*(-1 + E^((2*I)*(c + d*x))))/(1 + E^((2*I)*(c + d*x)))]) - Csc[c + d*x]^5*(1650*Cos[c + d*x]
 - 2051*Cos[3*(c + d*x)] + 961*Cos[5*(c + d*x)] - (282*I)*Sin[c + d*x] + (49*I)*Sin[3*(c + d*x)] + (331*I)*Sin
[5*(c + d*x)])*Sqrt[Tan[c + d*x]])*Sqrt[a + I*a*Tan[c + d*x]])/(2520*d)

________________________________________________________________________________________

Maple [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 500 vs. \(2 (193 ) = 386\).
time = 0.19, size = 501, normalized size = 2.10

method result size
derivativedivides \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (315 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+315 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+1260 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{5}\left (d x +c \right )\right )-472 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+1576 \left (\tan ^{4}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+190 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-276 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+70 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{315 d \tan \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(501\)
default \(-\frac {\sqrt {a \left (1+i \tan \left (d x +c \right )\right )}\, a^{2} \left (315 i \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+315 \sqrt {i a}\, \sqrt {2}\, \ln \left (-\frac {-2 \sqrt {2}\, \sqrt {-i a}\, \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+i a -3 a \tan \left (d x +c \right )}{\tan \left (d x +c \right )+i}\right ) a \left (\tan ^{5}\left (d x +c \right )\right )+1260 \ln \left (\frac {2 i a \tan \left (d x +c \right )+2 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}+a}{2 \sqrt {i a}}\right ) \sqrt {-i a}\, a \left (\tan ^{5}\left (d x +c \right )\right )-472 i \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{3}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}+1576 \left (\tan ^{4}\left (d x +c \right )\right ) \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}+190 i \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \tan \left (d x +c \right )-276 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\, \left (\tan ^{2}\left (d x +c \right )\right )+70 \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}\right )}{315 d \tan \left (d x +c \right )^{\frac {9}{2}} \sqrt {a \tan \left (d x +c \right ) \left (1+i \tan \left (d x +c \right )\right )}\, \sqrt {i a}\, \sqrt {-i a}}\) \(501\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x,method=_RETURNVERBOSE)

[Out]

-1/315/d*(a*(1+I*tan(d*x+c)))^(1/2)*a^2*(315*I*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*
(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^5+315*(I*a)^(1/2)*2^(1/2)*ln(-(-2*2^(
1/2)*(-I*a)^(1/2)*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)+I*a-3*a*tan(d*x+c))/(tan(d*x+c)+I))*a*tan(d*x+c)^5+126
0*ln(1/2*(2*I*a*tan(d*x+c)+2*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)+a)/(I*a)^(1/2))*(-I*a)^(1/2)*a*
tan(d*x+c)^5-472*I*tan(d*x+c)^3*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+1576*tan(d*x+c)
^4*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)+190*I*tan(d*x+c)*(a*tan(d*x+c)*(1+I*tan(d*x+
c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)-276*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2)*tan(d*x
+c)^2+70*(a*tan(d*x+c)*(1+I*tan(d*x+c)))^(1/2)*(I*a)^(1/2)*(-I*a)^(1/2))/tan(d*x+c)^(9/2)/(a*tan(d*x+c)*(1+I*t
an(d*x+c)))^(1/2)/(I*a)^(1/2)/(-I*a)^(1/2)

________________________________________________________________________________________

Maxima [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 3508 vs. \(2 (181) = 362\).
time = 1.70, size = 3508, normalized size = 14.68 \begin {gather*} \text {Too large to display} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="maxima")

[Out]

-1/1260*(sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)*(((5040*I - 5040)*a^2*cos(7*d*
x + 7*c) - (16800*I - 16800)*a^2*cos(5*d*x + 5*c) + (20496*I - 20496)*a^2*cos(3*d*x + 3*c) - (9071*I - 9071)*a
^2*cos(d*x + c) - (5040*I + 5040)*a^2*sin(7*d*x + 7*c) + (16800*I + 16800)*a^2*sin(5*d*x + 5*c) - (20496*I + 2
0496)*a^2*sin(3*d*x + 3*c) + (9071*I + 9071)*a^2*sin(d*x + c))*cos(7/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x +
2*c) + 1)) + 8*(121*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c)^2 - (121*I - 121)*
a^2*cos(d*x + c) + 121*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*sin(2*d*x + 2*c)^2 + (121*I + 12
1)*a^2*sin(d*x + c) + 630*((I - 1)*a^2*cos(2*d*x + 2*c)^2 + (I - 1)*a^2*sin(2*d*x + 2*c)^2 - (2*I - 2)*a^2*cos
(2*d*x + 2*c) + (I - 1)*a^2)*cos(3*d*x + 3*c) + 242*((I - 1)*a^2*cos(d*x + c) - (I + 1)*a^2*sin(d*x + c))*cos(
2*d*x + 2*c) + 630*(-(I + 1)*a^2*cos(2*d*x + 2*c)^2 - (I + 1)*a^2*sin(2*d*x + 2*c)^2 + (2*I + 2)*a^2*cos(2*d*x
 + 2*c) - (I + 1)*a^2)*sin(3*d*x + 3*c))*cos(3/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + (-(5040*I
 + 5040)*a^2*cos(7*d*x + 7*c) + (16800*I + 16800)*a^2*cos(5*d*x + 5*c) - (20496*I + 20496)*a^2*cos(3*d*x + 3*c
) + (9071*I + 9071)*a^2*cos(d*x + c) - (5040*I - 5040)*a^2*sin(7*d*x + 7*c) + (16800*I - 16800)*a^2*sin(5*d*x
+ 5*c) - (20496*I - 20496)*a^2*sin(3*d*x + 3*c) + (9071*I - 9071)*a^2*sin(d*x + c))*sin(7/2*arctan2(sin(2*d*x
+ 2*c), -cos(2*d*x + 2*c) + 1)) + 8*(121*((I + 1)*a^2*cos(d*x + c) + (I - 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c
)^2 + (121*I + 121)*a^2*cos(d*x + c) + 121*((I + 1)*a^2*cos(d*x + c) + (I - 1)*a^2*sin(d*x + c))*sin(2*d*x + 2
*c)^2 + (121*I - 121)*a^2*sin(d*x + c) + 630*(-(I + 1)*a^2*cos(2*d*x + 2*c)^2 - (I + 1)*a^2*sin(2*d*x + 2*c)^2
 + (2*I + 2)*a^2*cos(2*d*x + 2*c) - (I + 1)*a^2)*cos(3*d*x + 3*c) + 242*(-(I + 1)*a^2*cos(d*x + c) - (I - 1)*a
^2*sin(d*x + c))*cos(2*d*x + 2*c) + 630*(-(I - 1)*a^2*cos(2*d*x + 2*c)^2 - (I - 1)*a^2*sin(2*d*x + 2*c)^2 + (2
*I - 2)*a^2*cos(2*d*x + 2*c) - (I - 1)*a^2)*sin(3*d*x + 3*c))*sin(3/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2
*c) + 1)))*sqrt(a) + 2520*(2*(-(I - 1)*a^2*cos(2*d*x + 2*c)^4 - (I - 1)*a^2*sin(2*d*x + 2*c)^4 + (4*I - 4)*a^2
*cos(2*d*x + 2*c)^3 - (6*I - 6)*a^2*cos(2*d*x + 2*c)^2 + (4*I - 4)*a^2*cos(2*d*x + 2*c) + 2*(-(I - 1)*a^2*cos(
2*d*x + 2*c)^2 + (2*I - 2)*a^2*cos(2*d*x + 2*c) - (I - 1)*a^2)*sin(2*d*x + 2*c)^2 - (I - 1)*a^2)*arctan2((cos(
2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*sin(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d
*x + 2*c) + 1)) - cos(d*x + c), (cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)^(1/4)*cos(1
/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) - sin(d*x + c)) + ((I + 1)*a^2*cos(2*d*x + 2*c)^4 + (I +
1)*a^2*sin(2*d*x + 2*c)^4 - (4*I + 4)*a^2*cos(2*d*x + 2*c)^3 + (6*I + 6)*a^2*cos(2*d*x + 2*c)^2 - (4*I + 4)*a^
2*cos(2*d*x + 2*c) + 2*((I + 1)*a^2*cos(2*d*x + 2*c)^2 - (2*I + 2)*a^2*cos(2*d*x + 2*c) + (I + 1)*a^2)*sin(2*d
*x + 2*c)^2 + (I + 1)*a^2)*log(cos(d*x + c)^2 + sin(d*x + c)^2 + sqrt(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2
- 2*cos(2*d*x + 2*c) + 1)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2 + sin(1/2*arctan2(sin(2
*d*x + 2*c), -cos(2*d*x + 2*c) + 1))^2) - 2*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1)
^(1/4)*(cos(1/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1))*sin(d*x + c) + cos(d*x + c)*sin(1/2*arctan2(
sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)))))*(cos(2*d*x + 2*c)^2 + sin(2*d*x + 2*c)^2 - 2*cos(2*d*x + 2*c) + 1
)^(1/4)*sqrt(a) + ((-(5040*I - 5040)*a^2*cos(9*d*x + 9*c) + (5880*I - 5880)*a^2*cos(7*d*x + 7*c) - (6678*I - 6
678)*a^2*cos(5*d*x + 5*c) + (501*I - 501)*a^2*cos(3*d*x + 3*c) + (857*I - 857)*a^2*cos(d*x + c) + (5040*I + 50
40)*a^2*sin(9*d*x + 9*c) - (5880*I + 5880)*a^2*sin(7*d*x + 7*c) + (6678*I + 6678)*a^2*sin(5*d*x + 5*c) - (501*
I + 501)*a^2*sin(3*d*x + 3*c) - (857*I + 857)*a^2*sin(d*x + c))*cos(9/2*arctan2(sin(2*d*x + 2*c), -cos(2*d*x +
 2*c) + 1)) + 6*(947*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c)^2 - (947*I - 947)
*a^2*cos(d*x + c) + 947*(-(I - 1)*a^2*cos(d*x + c) + (I + 1)*a^2*sin(d*x + c))*sin(2*d*x + 2*c)^2 + (947*I + 9
47)*a^2*sin(d*x + c) + 840*(-(I - 1)*a^2*cos(2*d*x + 2*c)^2 - (I - 1)*a^2*sin(2*d*x + 2*c)^2 + (2*I - 2)*a^2*c
os(2*d*x + 2*c) - (I - 1)*a^2)*cos(5*d*x + 5*c) + 1960*((I - 1)*a^2*cos(2*d*x + 2*c)^2 + (I - 1)*a^2*sin(2*d*x
 + 2*c)^2 - (2*I - 2)*a^2*cos(2*d*x + 2*c) + (I - 1)*a^2)*cos(3*d*x + 3*c) + 1894*((I - 1)*a^2*cos(d*x + c) -
(I + 1)*a^2*sin(d*x + c))*cos(2*d*x + 2*c) + 840*((I + 1)*a^2*cos(2*d*x + 2*c)^2 + (I + 1)*a^2*sin(2*d*x + 2*c
)^2 - (2*I + 2)*a^2*cos(2*d*x + 2*c) + (I + 1)*a^2)*sin(5*d*x + 5*c) + 1960*(-(I + 1)*a^2*cos(2*d*x + 2*c)^2 -
 (I + 1)*a^2*sin(2*d*x + 2*c)^2 + (2*I + 2)*a^2*cos(2*d*x + 2*c) - (I + 1)*a^2)*sin(3*d*x + 3*c))*cos(5/2*arct
an2(sin(2*d*x + 2*c), -cos(2*d*x + 2*c) + 1)) + 9824*(((I - 1)*a^2*cos(d*x + c) - (I + 1)*a^2*sin(d*x + c))*co
s(2*d*x + 2*c)^4 + ((I - 1)*a^2*cos(d*x + c) - ...

________________________________________________________________________________________

Fricas [B] Both result and optimal contain complex but leaf count of result is larger than twice the leaf count of optimal. 566 vs. \(2 (181) = 362\).
time = 0.38, size = 566, normalized size = 2.37 \begin {gather*} -\frac {8 \, \sqrt {2} {\left (646 i \, a^{2} e^{\left (11 i \, d x + 11 i \, c\right )} - 1001 i \, a^{2} e^{\left (9 i \, d x + 9 i \, c\right )} + 684 i \, a^{2} e^{\left (7 i \, d x + 7 i \, c\right )} + 966 i \, a^{2} e^{\left (5 i \, d x + 5 i \, c\right )} - 1050 i \, a^{2} e^{\left (3 i \, d x + 3 i \, c\right )} + 315 i \, a^{2} e^{\left (i \, d x + i \, c\right )}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + 315 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} + i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right ) - 315 \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )} \log \left (\frac {{\left (4 \, \sqrt {2} {\left (a^{2} e^{\left (2 i \, d x + 2 i \, c\right )} + a^{2}\right )} \sqrt {\frac {a}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} \sqrt {\frac {-i \, e^{\left (2 i \, d x + 2 i \, c\right )} + i}{e^{\left (2 i \, d x + 2 i \, c\right )} + 1}} - i \, \sqrt {\frac {32 i \, a^{5}}{d^{2}}} d e^{\left (i \, d x + i \, c\right )}\right )} e^{\left (-i \, d x - i \, c\right )}}{4 \, a^{2}}\right )}{630 \, {\left (d e^{\left (10 i \, d x + 10 i \, c\right )} - 5 \, d e^{\left (8 i \, d x + 8 i \, c\right )} + 10 \, d e^{\left (6 i \, d x + 6 i \, c\right )} - 10 \, d e^{\left (4 i \, d x + 4 i \, c\right )} + 5 \, d e^{\left (2 i \, d x + 2 i \, c\right )} - d\right )}} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="fricas")

[Out]

-1/630*(8*sqrt(2)*(646*I*a^2*e^(11*I*d*x + 11*I*c) - 1001*I*a^2*e^(9*I*d*x + 9*I*c) + 684*I*a^2*e^(7*I*d*x + 7
*I*c) + 966*I*a^2*e^(5*I*d*x + 5*I*c) - 1050*I*a^2*e^(3*I*d*x + 3*I*c) + 315*I*a^2*e^(I*d*x + I*c))*sqrt(a/(e^
(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + 315*sqrt(32*I*a^5/d^2)*
(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d*x + 8*I*c) + 10*d*e^(6*I*d*x + 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d
*e^(2*I*d*x + 2*I*c) - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c) + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))
*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) + I*sqrt(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*
d*x - I*c)/a^2) - 315*sqrt(32*I*a^5/d^2)*(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d*x + 8*I*c) + 10*d*e^(6*I*d*x
+ 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^(2*I*d*x + 2*I*c) - d)*log(1/4*(4*sqrt(2)*(a^2*e^(2*I*d*x + 2*I*c)
 + a^2)*sqrt(a/(e^(2*I*d*x + 2*I*c) + 1))*sqrt((-I*e^(2*I*d*x + 2*I*c) + I)/(e^(2*I*d*x + 2*I*c) + 1)) - I*sqr
t(32*I*a^5/d^2)*d*e^(I*d*x + I*c))*e^(-I*d*x - I*c)/a^2))/(d*e^(10*I*d*x + 10*I*c) - 5*d*e^(8*I*d*x + 8*I*c) +
 10*d*e^(6*I*d*x + 6*I*c) - 10*d*e^(4*I*d*x + 4*I*c) + 5*d*e^(2*I*d*x + 2*I*c) - d)

________________________________________________________________________________________

Sympy [F(-1)] Timed out
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Timed out} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))**(5/2)/tan(d*x+c)**(11/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: TypeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+I*a*tan(d*x+c))^(5/2)/tan(d*x+c)^(11/2),x, algorithm="giac")

[Out]

Exception raised: TypeError >> An error occurred running a Giac command:INPUT:sage2:=int(sage0,sageVARx):;OUTP
UT:Warning, need to choose a branch for the root of a polynomial with parameters. This might be wrong.Non regu
lar value [

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.00 \begin {gather*} \int \frac {{\left (a+a\,\mathrm {tan}\left (c+d\,x\right )\,1{}\mathrm {i}\right )}^{5/2}}{{\mathrm {tan}\left (c+d\,x\right )}^{11/2}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(11/2),x)

[Out]

int((a + a*tan(c + d*x)*1i)^(5/2)/tan(c + d*x)^(11/2), x)

________________________________________________________________________________________